CAMBRIDGE
INTERNATIONAL EXAMINATIONS

Abridge Con

NOVEMBER 2002

INTERNATIONAL GCSE

MARKSCHENE

MAXIMUM MARK: 110

SYLLABUS/COMPONENT: 0654/3

CO-ORDINATED SCIENCES (EXTENDED)

Page 1 of 6	Mark Scheme	Syllabus
	IGCSE Examinations – November 2002	0654
		and the second s

la	formula shown or correct substitution;		Tin 1
1 4	1.03(1);		Se
	427;		COL
			3
b	15-20 kHz ;		
	10-20 Hz ;	*	2
	en e	٠	2.
С	2, 4, 5, (1) 3, 6;;;		3
d	signal is added to a carrier wave;		
	this changes the, amplitude / frequency;		2
0(-)(')	0.03 % 10.04 %		1
2(a)(i)	0.03 % / 0.04 % ;	6	1
(ii)	carbon dioxide concentration is a limiting factor;		
(11)	carbon dioxide is a reagent in photosynthesis / equation given;		
	so rate of photosynthesis increases;		
	photosynthesis makes, glucose / substances required for fruit growth;		2 max
(b)(i)	convection;		
	warm air rises (out through ventilators);		
	as it is less dense (than cold air);		2 max
		*	
(ii)	opening at a higher temperature keeps more carbon dioxide inside;		
\$ + ·	photosynthesis / reactions, happen faster at higher temperature;		2
	because, molecules / enzymes / reactants, have more kinetic energy;		3
/:::\	enzymes, damaged / denatured, at this high temperature;		
(iii)	optimum temperature for plant enzymes is below 27 °C;		
	reactions / photosynthesis, take place more slowly;		2 max
	reactions, photosynthesis, take place there are may,	, d.	
(c)(i)	transparency / don't react (with air / water);		1
. , , ,			
(ii)	no extra carbon dioxide / heating provided;	•	1
(iii)	polyethylene;		
(111)	extra light;		

extra carbon dioxide;

Page 2 of 6	Mark Scheme	Syllabus
	IGCSE Examinations – November 2002	0654

3a(i)	trend in a property / named property;			Se.
	which repeats across periods;	2	u di Hil	2
(ii)	silicon / the Group IV element;			
	follows pattern from second period / third pe	eriod will have	•	
	similar pattern to second;			2
		* * *	٠	
(b)	carbon has a giant structure / diagram;			
	neon has a simple structure / simple molecul	ar / atomic / diagram;	*	
	carbon needs more energy to break bonds (i	n order to melt);		
	little energy needed to separate neon atoms;			3 max
(a)(i)	three shared pairs;		6	
(c)(i)	other outer electrons correct;	4,		2
	other outer electrons correct,			2
(ii)	$N_2 + 3F_2 \rightarrow 2NF_3;$			1
4a	0.5 A;			
	0.5 A;	¥°		2
b	9 V;	•		1
c	6V;			
	" 3 V ; " "		4	2
d	$1/R = 1/R_1 + 1/R_2$;			
	= 1/6 + 1/6;	* •		
	R = 3 ohms;			3
e	electrons;			
	have a negative charge;	** *		
	move;			
	from polythene to cloth / vice versa;			
	the flow of electrons is the electric current;			4 max

·			N. A.	
Page 3 of 6	Mark Scheme	Syllabu	80.	
	IGCSE Examinations – November 2002	0654	00	1

5(a)(i) A ureter; B bladder; C urethra; (ii) label to renal artery or aorta; (iii) right atrium; 1 less water lost from body (on cold day); (b) by sweating; so blood contains more water; kidneys respond by excreting more water in urine; allow all v.v. for hot day 3 max (c) evaporation; water vapour in air; condensation; forms water droplets / clouds; rain / precipitation; absorbed, through root hairs / by osmosis; 3 max dissolve, an ionic compound / named soluble compound; 1 ба b(i) zinc atoms are losing electrons; zinc atoms are ionising (to a greater extent than copper); (ii) metals of higher reactivity ionise more readily; electrons flow from more reactive to less reactive; 2 (iii) increases; voltage depends on reactivity difference / greater reactivity difference 2 between Zn and Ag than between Zn and Cu;

		4	
Page 4 of 6	Mark Scheme	Syllabu	D
	IGCSE Examinations – November 2002	0654	80

aCambridge.com ions / (positive) particles, shown in lattice; С surrounded by delocalised electrons / sea of electrons; forces of attraction between ions and electrons; 3 max ref. to electrons moving easily through the structure; red / brown / coppery, solid formed; d(i) magnesium dissolves; mixture becomes warm; solution loses its colour / becomes colourless; 1 max moles of magnesium = $0.48 \div 24 = 0.02$; (ii) use of equation to show 1:1 ratio Mg: Cu; mass of copper = $64 \times 0.02 = 1.28 g$; 3 allow other suitable methods of working magnesium and calcium; е 2 because the same number of atoms; in red blood cells; 7(a)(i)2 oxygen transport; in blood plasma / produced by lymphocytes; (ii) 2 destroy, antigens / pathogens / bacteria; (iii) in stomach / small intestine; digests proteins to, amino acids / polypeptides; 2 (iv) in blood plasma / made in pancreas; reduces blood sugar levels / stimulates conversion of glucose to glycogen / increase takeup of glucose by (liver or muscle) cells; 2 biuret test; (c) add biuret reagent / potassium hydroxide and copper sulphate (solution); look for purple colour; (maximum two marks if heated) 3

Page 5 of 6	Mark Scheme	Syllabu	
	IGCSE Examinations – November 2002	0654	١

Cambridge.com $pressure = force \div area;$ 8a(i) $10\,000 \div 7.2$; $= 1389, N m^{-2} / Pa;$ 3 (ii) the same as answer to (i); pressure is the same everywhere in the liquid; 2 (b) output force is greater than input force; same pressure on a larger area; 2 particles are touching; (c)(i) cannot be compresed; 2 (ii) gases can be compressed; would not transmit forces; 2 (d)(i) pressure increases; directly proportional / particles hit walls of container, more often / harder; 2 (ii) -273 °C / 0K; temperature at which all particles have zero motion; 2

Page 6 of 6 Mark Scheme Syllabus	
IGCSE Examinations – November 2002 0654	0

CO₃²⁻; 9a working refers to need for charge balance; b(i) calcium carbonate; + sodium chloride; 2 calcium now insoluble / soluble calcium compounds removed; (ii) 1 shake hard water with soap; (iii) standardise shaking; find out amount of soap needed for lather; add sodium carbonate to equal volume of the hard water; find out amount of soap needed for lather; if sodium carbonate effective then less soap needed; or one sample of water with NaCO3 and one without; equal volumes of both samples; add equal amount of soap to each; shake; standardise shaking; if NaCO_s softens water then that one has more lather; 4 max (iv) ion exchange water passed through, resin / small beads; calcium (and magnesium) ions stick to resin; and are replaed by sodium; or distillation water is boiled; vapour collected and condensed; calcium compounds, do not vaporise / are removed; 3